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FOREWORD

This report describes work accomplished under Contract NAS 3-2540 during the
period March 21, 1965 to June 20, 1965. This program is being administered by R. T,
Begley of the Astronuclear Loboratory, Westinghouse Electric Corporation. G. G. Lessmann

and D. R. Stoner are responsible for the performance of this investigation.

Mr. P, E. Moorhead of the National Aeronautics and Space Administration is

Technical Manager of this program.
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1. INTRODUCTION

This is the Eighth Quarterly Progress Report describing work accomplished under
Contract NAS 3-2540. The objective of this program is to determine the weldability and
long time elevated temperature stability of promising refractory metal alloys in order to
determine those most suitable for use in advanced alkali-metal space electric power systems.
Alloys included in this investigation are listed in Table 1. A detailed discussion of the
program and program objectives was presented in the First Quarterly Report. As an addition
to this program, an evaluation of the effect of oxygen contamination on the weldability
and thermal stability of refractory metal alloys has been undertaken. Three alloys, including
T-111, T-222, and F5-85 will be evaluated. A detailed discussion and outline of this study

was presented in the Seventh Quarterly Report.

Process and test controls employed throughout this program emphasize the important
influence of interstitial elements on the properties of refractory metal alloys. Stringent
process and test procedures are required, including continuous monitoring of the TIG weld
chamber atmosphere, electron beam welding at low pressures, aging in furnaces employing
hydrocarbon free pumping systems providing pressures less than 10-8 torr, and chemical
sampling following successive stages of the evaluation for verification of these process

controls.

Equipment requirements and set-up, and procedures for welding and testing, have
been described in previous progress reports. Any improvements in processes, changes in

procedures, or additional processes and procedures are described in this report.
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1.  SUMMARY
During this period the weldability study phases of this program were completed for
the columbium and fantalum alloys. This completes a major portion of this study as outlined

in Figure 1, and permits initiation of the elevated temperature thermal stability studies.

A weldability study of yttrium modified D-43 was completed. As with C-129Y and
AS-55, ytirium additions to D-43 resulted in improved weld ductility. The net improvement
is evident in the bend transition summary shown in Figure 2. This figure shows the range of
bend ductile-brittle transition temperatures obtained in testing twelve welds for each of two
welding processes for each alloy. For this summary weld parameters were varied over a broad
range and welds were bend tested in both the longitudinal and transverse directions. In
addition to the improved performance of yttrium modified D-43 (D-43Y), shown in this figure,
the post weld annealing response for 1 hour anneals at 1900°F, 2100°F, and 2400°F of D-43Y
was considerably different than for D-43. Annealing resulted in moderately improved weld
ductility for D-43Y whereas D-43 responded to increased annealing temperature by displaying
a severe loss and then recovery of ductility through an apparent age-overage reaction. D-43Y

displayed a hot tearing tendency in TIG welding, the cause of which has not been determined.

A study to determine the causes and effects of weld porosity in refractory metal
alloys was completed. Porosity appears to result from the degassing during welding of a
pickling residue (or adsorbed hydrogen) from the surfaces of the joint interface. Hence,
minimizing the joint surface area and eliminating crevices at the interface is desirable. In
this respect, machined edges are better than sheared edges. Considerable variation in porosity
sensitivity is observed between alloys. Overall alloy fabricability and porosity sensitivity
appear to be closely related. The most fabricable alloys can be welded using sheared edges,
whereas the less fabricable alloys require machined edges and vacuum degassing following

pickling. No significant effects of weld porosity on weld ductility were observed.

IS
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Nine program alloys were included in a plate weldability evaluation which was
completed during this period. As in the sheet material evaluation, weld ductility was
emphasized. The alloys evaluated, in order of decreasing plate weld ductility, were:
Ta-10W, T-111, T-222, SCb-291, FS-85, C-129Y, D-43, Cb-752, and B-66. The tantalum
alloys, as a group, were considerably more ductile than the columbium alloys. All were
readily weldable with the exception of B-66 which has a tendency to hot tear, making thick

section welding difficult.

The three alloys included in the study of the effect of oxygen contamination on
weldability were doped to the first test level and evaluated. The first contamination level
is 500 ppm in FS-85 and 350 ppm in T-111 and T-222, providing approximately equal con-
tamination in atomic percent. Evaluation at this level has been completed. The results
tend to confirm preliminary data. T-111 was least sensitive. T-222 was most sensitive,
significantly more so than T-111. The difference in T-111 and T-222 remains surprising in
view of their close similarity in chemistry, Process control of the doping apparatus has been
improved. Numerous process surveillance tests were run to ascertain the adequacy of the

doping process.
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I, TECHNICAL PROGRAM

A, WELDING EVALUATIONS

1. Weldability of Yttrium Modified D-43 (D-43Y) - The alloys C-129Y and AS-55,

evaluated in this program, contain minor additions of the rare earth element yttrium. As an
addition to columbium alloys, this element provides an interesting modification of mechanical
properties resulting primarily in improved fabricability. The beneficial effect of yttrium has
been demonstrated in the weldability evaluation of C~129Y and AS-55, see Figure 1, sub-
stantiating the claims by the developers of these alloys(]’z’a). C-129Y base and weld metal
bend ductile-to-brittle transition temperatures are among the lowest of the columbium alloys
despite its relatively high solute content. AS-55, even though produced with a high and
normally detrimental oxygen level, exhibits reasonably good ductility. Further, both alloys
are only moderately sensitive to weld parameter variations as compared with the other
columbium alloys. The beneficial effect of yttrium is apparently instrumental in providing
the improved ductility in these alloys.

Yttrium is essentially insoluable in columbium, and very reactive with oxygen(4'5).
Hence, the most probable mechanisms for improved fabricability are cn effective reduction
in matrix oxygen level by preferential combination with yttrium, purification of the base
metal during original melting and during welding by slagging of the yttrium oxide, and
grain refinement resulting from the presence of the highly stable oxide. To a lesser extent
nitrogen levels are also reduced during melting(s) and welding, probably by volatilization

as YN, further explaining the improved ductility.

There was no reason to assume that the beneficial effect of yttrium would be
limited to AS-55 and C-129Y. Hence, determining the effects of yttrium on other alloys
might prove to be an interesting and promising endeavor. D-43 was selected for this
evaluation. D-43 has twice the solute level of AS-55 and is nominally a low interstitial

alloy. Properly heat treated, D-43 is a promising high strength, high temperature alloy.

>
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Considerable variability in weld ductility is observed in this alloy. This variability reflects
the effect of the carbide phase(s) morphology, which is altered considerably during welding,
on strength and ductility. This heat-treat sensitivity characteristic was also clearly evident
in the post weld annealing study(é) in which D-43 TIG welds displayed a pronounced aging
response, Figure 10, A 1900°F, 1 hour age raised the weld transition temperature above
475°F. This loss of ductility was partially recovered after 1 hour at 2200°F, and completely
after 1 hour at 2400°F. Obviously any improvement in this alloy resulting from the addition

of yttrium would be fairly eosily observed.

Four square feet of 0.035 inch thick D-43Y sheet were obtained from the Wah-Chang

Corp. for this evaluation. The analyses of this material is shown in Table 2. This sheet has the

lowest oxygen level among the columbium alloys indicating both the beneficial affect of
yttrium and that adequate production process controls were employed. The sheet was in the
recrystallized condition as received with an ASTM grain size of 9 and a DPH hardness of 151,
resulting from a final anneal of 2 hours at 2400°F. For comparison the D-43 sheet evaluated
in this program had a final anneal of 1 hour at 2600°F, a hardness of DPH 220, and o grain

size of 5.

The microstructure of the as-received sheet, Figure 3, show that the D-43 sheet has
an aged structure containing predominantly mono-metal carbides transformed in situ from the
dimetal carbide. The D-43Y base metal also contains the stable mono-metal carbides but not
in an aged structure. These structures account for differences in grain size and hardness for
the two alloys and indicate that D-43 was optimized for high temperature strength through

(7)

strain induced precipitation hardening °, whereas D-43Y was not. This difference in
structure may also be largely responsible for differences in base metal bend ductility, but
not for differences in the weld bend test results discussed below. For both alloys weld bend
specimen failures occurred in thermally distrubed areas (weld or heat affected zone) not in
the unaltered base metal, demonstrating that the base metal condition did not influence weld

bend test results.
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The weldability evaluation of D-43Y followed the procedure standardized
for this program and reported in previous reporfs(s). Weld parameters were chosen to ascertain
the effects of variation in weld freezing rate, cooling rate, and unit weld length heat input.
This is accomplished in TIG welding by varying the welding speed, clamp spacing, and weld
size (amperage) and maintaining other factors, including arc gap and electrode configuration,
constant. Essentially the same procedure was employed in EB welding except that weld size
is influenced also by the cyclic beam deflection and beam current is restricted for any one
weld speed-beam deflection combination because of the physical effect of the beam power

density on the weldment,

Weld parameters are given in Tables 3 and 4 while bend test results for the individual
welds are shown in Figures 5 to 8. The base metal bend test curves are shown in Figure 4.
Some difficulty was encountered in TIG welding D-43Y. Weld No. 11, Table 4, had a
transverse crack through the weld. This is an unusual failure with no apparent explanation.
Initially welds 5, 7, and 10 hot tore during welding but reruns of these were satisfactory. The
significance of the hot tears is not clear since these occurred in joining narrow specimens,
one-half inch wide, which probably permits more walking during welding than would be
encountered in wide, and more restrained, sections. Undoubtedly these tests demonstrate a
tendency toward hot tearing, but perhaps not as severely as a cursory examination of these
results would indicate. There was no hot tearing noted in the bead-on-plate patch test run
on this alloy. In this respect, these results are similar to those described for welds in oxygen
doped T-111, see Section 11-B of this report. Hot tearing of the T-111 welds was unexpected,
thereby tending to also raise the question of significance with D-43Y, In addition to the hot
tears, several D-43Y welds contained porosity which, as described in Section 111-A-3 of this
report, results primarily from inadequate joint preparation even though innate alloy character-
istics are also partially responsible. In both TIG and EB welds, improved ductility was
slightly favored by moderate weld speeds and small TIG welds were slightly more ductile

than large ones. Among the TIG welds, the transverse transition temperature tends to decrease
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with increased welding speed while the longitudinal transition temperature increases. This
could indicate that weld strength increases slightly with increased speed causing, by non-
uniform bending, a transference of strain in transverse tests from the weld to more ductile
base metal resulting in an apparent lowering of the DBTT, With the uniform straining of
longitudinal tests, however, the increased weld strength causes an apparent increase in the
DBTT. These trends are not particularly strong. Hence, the spread in transition temperatures
observed appears to represent an alloy characteristic more than a measure of the effect of
welding variables. This chservation is in basic agreement with the results which have been
obtained on the other alloys. In this respect Figure 1, which compares the alloys on the basis
of total spread in bend transition temperatures provides a comparison of an actual alloy
characteristic, the variability of weld ductility. From this figure alloys can be compared on
the basis of both the lowest transition temperature obtainable and the variability involved in
obtaining consistent ductility, namely the spread in ductile-to-brittle transition temperatures.
A considerable improvement in ductility is apparent for D-43Y as compared with D-43. Both

the transition temperatures and their variability are less for D-43Y, "

An interesting improvement in alloy behavior also occurred in the post weld anneal-
ing study. The response of D-43Y weld ductility, as measured by the ductile-to-brittle
transition temperature, to annealing is shown as a function of temperature in Figure 9. The
corresponding behavior for D-43 is shown in Figure 10. A significant loss and then recovery
of weld ductility with increasing temperature was observed for D-43, while D-43Y responded
primarily with moderately improved ductility. D-43Y is apparently considerably less sensitive
to the selected post weld anneals than D-43 indicating that the presence of yttrium, or
Y203, appreciably alters the morphology and/or kinetics of carbide precipitation.

This evaluation has demonstrated that the beneficial effect on ductility of minor
yttrium additions can be realized in D-43 as well as in C-129Y and AS-55. In total, a
great deal more information is required to understand this phenomena with respect to its

effect on the kinetics of metallurgical reactions, phase morphology, and consequently
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physical and mechanical properties. The tendency of D-43Y to hot tear could be a disadvantage
although the cause of these tears is not obvious. In this respect, however, an unusual weld
failure also occurred in a C-129Y program weld (one prepared using optimized TIG weld para-
meters for the thermal stability study). This weld fractured along its centerline in a virtually
flat plane from the weld start for about 2 inches. The fracture appeared to occur upon removal
from the welding fixture. It was easily extended another 2 inches by hand bending the two
halves of the weld demonstrating the existence of a plane of weakness in this weld. The

tearing was identified as a grain boundary fracture. This failure is suspicious in that it was
unique for a weld in as-received sheet and may therefore be related to the yttrium which could
be preferentially concentrated as a largely incoherent oxide at weld centerline grain boundaries.
A similar defect in oxygen contaminated T-111 has occurred. Preliminary electron metallography
data indicates that the T-111 fracture surface does in fact contain a high precipitate concen-

tration. (See Section I11-B of this report). .

2. Manual TIG Weld Evaluation - Manual TIG welding has been employed in this

program for restraint tests in 0. 035 inch thick sheet and 0. 375 inch thick plate, and for butt
welding plate test specimens. The welding for both of these efforts has been completed and

the results are presented in this section.

Restraint Tests - Bead-on-plate patch tests and circular groove restraint tests were
used in evaluating hot or cold cracking tendencies in sheet and plate thicknesses respectively.
Sketches of the specimens employed in these tests are shown in Figure 11. Actual welded
specimens were shown in previous reports, Sheet and plate specimens were inspected visually
and by dye penetrant. Sheet specimens were also radiographed. Test results are summarized
in Table 5. A measure of the relative strain introduced in these tests is provided by the
distortion measurements listed in this table. Considerable distortion occurred in all specimens
indicating the severity of these tests. Because of experimental variability, as noted particularly
by differences in weld width, the distortion per se is probably not a valid basis for alloy
comparison. Also, distortion is routinely encountered and accommodated in welding fabrica-

tion. Hence, the primary significance of these tests lies in demonstrating simple weldability
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as measured by the ability to produce sound welds using conventional welding practices.

All patch tests showed NDT indications at weld craters but these were not listed
as "positive” in Table 5 since they could have been eliminated by weld current tailing. The
B-66 patch test had a positive indication of a 1/8 inch weld start crack by both radiographic
and dye-penetrant testing. This crack is probably a hot tear since this problem has been
previously observed in welding B-66. Positive indications in FS$-85 radiographs were traced
to weld texture, not defects.

No defects were detected in the circular groove plate weld specimens. These speci-
mens were welded with a fusion root pass to increase the effective weld depth. Two filler
passes were required to fill the groove. Filler was manually added to the weld using 0, 082
inch diameter wire of the same composition as the base material. No particular difficulty
was encountered and, based on this test, all alloys appear to have satisfactory weldability

in plate thicknesses.

Plate Buit Welding - To ascertain the effect of increased section thickness on

weldability, a plate butt welding evaluation has been included in this program. In general,
weldability requirements tend to become more stringent with increased section thickness and
the effect of welding on mechanical properties becomes exaggerated. Hence, the plate
weld evaluation represents an important phase of this program complementing the previously
reported sheet weld study. Because of the large size of plate weldments, and thus high
material cost, the scope of this effort was more restricted than for the sheet weld evaluation.
Nine alloys were included in the plate welding study. These included all the tantalum alloys
and all the columbium alloys except D-43Y and AS-55. The tungsten base alloys will not
be welded in plate thicknesses. Approximately thirty-six feet of plate welding was required.
The plate weld program followed for each alloy is outlined in Figure 12. All
specimens were prepared with the same double "U" joint configuration (see Figure 13). This
is not necessarily an optimized design but proved satisfactory for all the alloys investigated.
Welds were evaluated by bend testing, post weld annealing, tensile testing, and optical

metallography. Both longitudinal and transverse tests were run. Chemical analyses were
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obtained to aid in evaluating the welding process controls.

Welding Procedures - Welding procedures for the different alloys were generally

the same. Tungsten arc, direct current straight polarity, manual welding in a helium atmos-
phere was used. The root of the welds were tacked together with zero joint clearance, and
the fusion root pass was made without the addition of filler metal. Additional passes, two
for the columbium base alloys and two or three for the tantalum based alloys, on each side
with filler wire added manually completed the butt weld. The filler wire diameter was
0.082 inches. Typical weldment configurations are shown in the macro-sections of Figure
15. Weldment flatness was controlled by alternate welding on opposite sides of the weld
joint, and by introducing a camber into the joint (by adjusting the tack weld holding fixture)
before applying the root pass. These actions taken at the discretion of an experienced welder
proved adequate for flatness control. Amperage and welding speed were both controlled by
the welder. These were approximately the same for a particular alloy group. Hence, the
welding schedule of Figure 14 for SCb-291 plate is typical of columbium alloys. Higher
welding currents and slower welding speeds were used for tantalum alloys. Support blocks
of either columbium or tantalum were placed under the specimens during welding to avert
contact with and, hence, pickup of copper from the water cooled work platen.

All welding was accomplished in the vacuum purged weld box following a sixteen
hour (overnight) pumpdown to approximately 10—6 torr. Backfilling was accomplished using
ultra-high purity helium providing total active impurity levels of about 1 ppm. Atmosphere
monitors were employed and welding was halted when the oxygen level reached 5 ppm or the
moisture level reached 10 ppm. The acceptable moisture level for plate welding was set
higher than for sheet welding (10 ppm vs. 5 ppm). This was necessary for practical reasons
since increased outgassing of interior weld chamber surfaces, the primary source of water
vapor, occurred with the high heat input of plate welding.

To minimize moisture outgassing and for operator comfort, extensive internal chamber
cooling was employed. A water cooled convection heat exchanger, Figure 16, and specially

designed water cooled welding torch and platen, Figure 17, were used. All flexible water

10
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connections on this tooling, including the torch coolant lines, were constructed from convoluted
stainless steel tubing providing essentially zero moisture permeability. Integrally spined
copper tubing was used in the heat exchanger providing excellent heat transfer characteristics.
The installed exchanger was baffled and canted in @ manner which enhances convection.
The heat exchanger provided a comfortable chamber atmosphere temperature. The water
cooled platen and torch maintained adequately low temperatures in the work area for
operator comfort and to avoid overheating, evaporation, or decomposition of gloves and torch
insulators.

Two torch styles are shown in Figure 17. One torch is equipped with an outer
plastic insulating sheath while the other uses nylon standoffs to insulate the stainless hose
from the torch and feed through assembly (not shown). The sheath design has
proved less satisfactory than the standoff design. Plastic sheaths tends to outgas and decompose
during a moderate temperature, chamber evacuation, bakeout. The torch is equipped with a
radiation shield. This protects the operator's hand from the radiant heat of the weldment.
The use of a shield has proven to be a necessity because of the increased thermal radiation
of the high melting point refractory metal alloys. The tantalum alloys in particular,

with melting points above 5000°F, have been troublesome in this respect.

Mechanical Test Procedures - Tensile tests were conducted according to recommended

Material Advisory Board procedures(9). A strain rate of 0. 005 in/in/min was used through
the 0. 6 percent offset yield point, then 0.05 in/in/min to specimen fracture. Tensile speci-
men designs are shown in Figures 18 and 19. Two inch gage lengths were used except for
longitudinal plate weld tensiles which had one and a half inch gage lengths. Tensile test
results for plate welds are listed in Table 6. For comparison, sheet tensile results for base
metal and transverse welds are listed in Table 7. All tensile tests were run on post weld
annealed specimens. The annealing temperatures were chosen on the basis of post weld
annealing studies reported in the Seventh Quarterly Progress Report. Pre-treatment for

base metal tensile specimens was the same as for weld specimens to assure that comparable

data was obtained.

1
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All plate weld bend testing was done at room temperature, using single point loading
over a fixed test span. Each specimen was tested in three stages using successively sharper
punch radii. The three punches have radii of 16t, 8t, and 3t. These are used to produce
successive respective bend angles of approximately 25°, 40°, and 140°, and calculated outer
fibre tensile strains of 3%, 6%, and 14%. Bend specimens were of conventional size, 1-1/2
inches wide by 6 inches long. Welds were tested in the as-welded condition. The test fix-
ture and typical bend tested weldments were shown in the Sixth Quarterly Progress Report.
Welded plate bend test data are summarized in Tables 8 and 9. A proportional limit stress
was calculated for most of the bends shown on these tables. Since contact points at the
punch and supports translate along the surfaces throughout the bend test, the proportional
limit calculation was based on an arbitrary selection of the load moment arm length. Hence,
while they are useful in ascertaining the relative resistance of the various alloys to bending
by correcting for specimen section variations, they do not represent accurate values of absol-
ute stress.

For each alloy and each of two weld operators, specimens were bend tested in both
the longitudinal and transverse directions. Also, bend tests were run on annealed specimens.
Selected annealing temperatures, as with the tensile specimens, were based on results obtained

in the sheet welding evaluation and are therefore not necessarily optimum for plate welds.

RESULTS
The plate welding study results are summarized for each alloy in the following
discussion. Alloys are discussed in order of decreasing ductility. The tantalum alloys are

superior in this respect to the most ductile columbium alloy.

Ta-10W - This alloy has excellent as-welded ductility in plate and sheet thickness
as demonstrated in tensile and bend tests. lts performance in this respect was the best among
the alloys tested. The as-welded longitudinal plate tensile test had an elongation at 24%,
easily sufficient to accommodate the highest strain requirements on the 3t bend tests. Ta-10W
was not tested in the post weld annealed condition since there is no apparent benefit to be

gained by annealing. Comparing the plate weld tensiles to sheet base tensiles, a joint

12
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efficiency of greater than 90% can be assumed.

T-111 - This alloy was only slightly inferior to Ta-10W producing full ductile bends
as welded except that both a transverse and longitudinal bend had slight tension surface weld
tearing. No defects were noted in the 2400°F annealed specimens. The annealed longitudinal
plate weld tensile had 22% elongation. Metallography revealed slight weld grain boundary
precipitation and also a heat affected zone-base metal interface precipitate which was pre-

©

viously observed in sheet welds and identified as hafnium monocarbide The tensile joint

efficiency for T-111 appears to be about 100%.

T-222 - This alloy also exhibited good ductility and proved nearly equal to T-111

while exhibiting greater strength. Slight weld tension surface tearing was noted in all the
as-welded bend specimens. This was eliminated by post-weld annealing for 1 hour at 2400°F.

The plate weld strength exceeded the sheet base metal strength for this alloy.

SCb-291 - As expected, because it is solid solution strengthened and only of moderate
strength, SCb-291 proved to be the most ductile columbium base alloy. The single failure
occurring in this alloy was a full section fracture in a longitudinal specimen which bent
through the nominal 140° before failure. Other specimens, including two stress relieved at
1900°F, produced defect free bends. A lower temperature anneal was employed for the plate
than was used on the sheet since the higher temperature, 2200°F, might impair the ductility
of this alloy through grain growth and it was felt that an overage anneal should be unnecessary.
The difference in annealing temperatures probably accounts for the lower tensile strength of

the sheet as compared with the plate weld tensile strength.

FS-85 - This alloy exhibited improved strength with a weld joint efficiency exceed-

ing 90%, while retaining reasonably good as-welded ductility. The annealed longitudinal
plate weld tensile specimen had 21% elongation corresponding with the full ductile 140°
bends obtained in the annealed welds. Both as-welded longitudinal bends failed, at 40° and
125°, by sudden, severe transgranular cleavage. Weld ductility was recovered by annealing

for 1 hour at 2400°F. The cleavage failures are typical of columbium alloys. This behavior
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contrasts with the tantalum base alloys in which failures occurred as ductile tears indicating
a total strain limitation rather than a loss of resistance to fracture propagation. The effect
of annealing on welded FS-85 plates was similar to that observed for sheet welds, Figure

20. Weld precipitation occurred in solute rich weld areas, but only in the final weld

pass indicating that successive weld passes tend to homogenize the cast structure of the
previously applied passes. Annealing also resulted in slight grain boundary precipitation in

the heat affected zone and base metal.

C-129Y - As compared with FS-85, increased strength at room temperature is realized
with a moderate loss in ductility. The ductility is recoverable through a 2400°F, 1 hour
anneal. The as-annealed plate weld strength is at least equal to the annealed sheet base
metal strength implying nearly a 100% joint efficiency. The metallurgical structure appears
relatively stable with only minor second phase precipitation occurring during annealing in
the solute rich intercellular areas of the weld. The base and heat offected zone contain a
dispersed and also agglomerated second phase(s). Weld bend test failures occurred catastrophi-

cally by full section transgranular cleavage as typical of the columbium alloys.

D-43 - The strength of welds in this alloy is not significantly higher than for C-129Y

even though a more severe ductility loss is encountered which was not recovered by the
single post-weld annealing treatment investigated. Strength and ductility in this system
are dependent on the morphology of dispersed carbide precipitates which is controllable
through heat treatment. Hence, these results are not likely optimized, and, in fact, the
data reported by Roche(lo) indicate that a considerable loss in ductility in this alloy can be
recovered by thermal treatment.

Based on Roche's results, the as-welded structure in the weld and heat affected
zone contains Cb2C platelets, Figure 11. These are stable above 2900°F but tend to transform
to low temperature mono-metal carbides on slow cooling, as would be encountered in plate
weldments, causing loss of ductility. Annealing in the 2300°F range should result in

eventually completing the transformation of the Cb2C platelets to a finely dispersed cubic
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columbium=-zirconium carbide and restoration of ductility. Evidence of this transformation is
apparent in the annealed weld microstructure, also shown in Figure 21. Weld joint efficiency

for the specific conditions of these tests was approximately 100%.

Cb-752 - Plate weld ductility in this alloy is marginal in the as-welded condition,
and also after annealing at 2200°F. As with D-43, there is no particular reason to assume that
the single annealing treatment is optimum for recovery of ductility. The 2200°F anneal was
chosen on the basis of the weld results in sheet material. EB weld results (reference Seventh
Quarterly) and data reported by Bewley and Schussler(] N indicate that a 2400°F or higher
anneal might have provided greater ductility recovery. Also, the annealed plate weld tensile
strength is considerably higher than sheet tensile strength implying that overaging and full
restoration in ductility has not been realized during the 2200°F anneal. Considerable preci-

pitation occurred in the weld and heat affected zone during annealing, Figure 22,

B-66 - A minimal room temperature plate weld ductility was obtained in this alloy

with only slight recovery resulting from a 1900°F stress relief anneal. Both tensile and bend
test results indicated that the ductile-to-brittle transition temperature was above room temper-
ature. The annealed transverse plate weld tensile specimen fractured with zero elongation at
a stress level less than the transverse sheet yield strength. Considerable second phase inter-

cellular precipitation occurred in the weld during annealing, Figure 23.

3. Weld Porosity - As discussed in the Sixth Quarterly Progress Report, several welds
in the T-222 parameter evaluation series contained x-ray detectable porosity. This was un-
expected and the need for an evaluation of this problem was indicated. At first the porosity
seemed confined to T-222, since T-111 welds were defect free. However, an examination of
thirty welds in each of the program alloys prepared for the thermal stability studies indicated
that the problem was more widespread. In this check no porosity was noted in Ta-10W welds
and only minor amounts in T=111, T-222, FS-85, and SCb~291. Moderate amounts of porosity
(2-3 pores/in) were noted in C-129Y, Cb-752, and B-66, and severe porosity occurred in
D-43 (and D-43Y in the parameter series). These results, showing a comparison of porosity

sensitivity, are summarized in Table 10.
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Since this problem proved to be of a general nature, variables associated with joint
preparation and welding were investigated. Obviously, with the considerable alloy to alloy
variability, porosity formation is also dependent on differences in innate alloy characteristics.
These differences are not clearly defined, and, since their definition would probably require
an evaluation beyond the scope of this program, were not directly evaluated in this investiga-
tion. However, to circumvent this limitation, the most sensitive alloy, D-43, was generally
employed to investigate this problem. This approach appeared rational since it would provide
a more sensitive measure of minor process variation, and it was assumed that a solution to
porosity in the worst alloy would be fully applicable to the others.

The relative importance of joint preparation and welding procedures was easily deter-
mined by producing bead-on-plate welds. Since these are welds produced without a joint,
they provide an independent evaluation of the welding process. A preliminary check using
D-43, D-43Y, C-129Y, Cb-752, and SCb-291 showed that bead-on-plate welds contained no
porosity. These tests were conducted on new material and also on used material adjacent to
defected welds providing a built-in pentrameter for radiographic inspection. This demonstrated

clearly that butt joint edge preparation, not welding procedure, was the source of porosity.

D-43 was selected for evaluating the effect of joint edge preparation variables on
TIG weld porosity. Mechanical and chemical edge preparations were evaluated. These tests
are summarized in the flow chart of Figure 24 while the respective pickling and rinsing pro-
cedures are listed in Table 11. The results, as determined by a porosity count are also shown

in Figure 24,

Test number 4 (see Figure 24) represents the normal shear-pickle-rinse-weld sequence
employed in the early phases of this program. The improvement in porosity over the thermal
stability welds (3.2 per inch vs 8.4 per inch, see Table 10) probably resulted from greater care
in rinsing. Interestingly, elimination of pickling, tests 1 and 2, using only sheared and scrubbed
edges nearly eliminates porosity. Hence, pickling is essential for the formation of porosity.
Edge grinding, test 5, resulted in a measureable decrease in porosity. Machined edges, test 6,

proved to be better than ground edges and reduced porosity to a level where it could well be
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overlooked in routine inspection. Among the pickling solutions those containing sulfuric acid
proved superior. The rinsing procedures proved to be about equal. Porosity in pickled samples

was eliminated only by vacuum baking prior to welding tests 8 and 9.

The following conclusions were made based on this series of tests:

1. The direct cause of porosity was not identified but porosity appears to
result from the degassing during welding of a pickling residue (or adsorbed hydrogen) from
the surfaces of the joint interface.

2. Mechanical preparation is important to the extent of minimizing the joint
interface surface area. Hence, machined edges are considerably better than sheared edges.
However, if pickling is not required, sheared edges are satisfactory.

3. The difference between alloys probably also reflects a difference in joint
interface area. The more fabricable alloys (more easily formed, welded, and with lower
bend transition temperatures) had less porosity in welds produced on sheared blanks.
Apparently the more fabricable alloys had less edge tearing from shearing and, hence, less
edge area and less porosity. With the exception of C-129Y, bend transition temperatures
increase with increasing porosity sensitivity. Hence, porosity as measured in these tests,
like bend ductility, is a measure of alloy fabricability.

4. For D-43 vacuum degassing of components following pickling and prior to
welding is required to prevent porosity. The less sensitive alloys, particularly T-111, T-222,
FS$-85, Ta-10W, and SCb-291 most likely do not require the vacuum degassing while for the
intermediate alloys (Cb-752, B-66, and C-129Y) degassing is probably desirable.

5. Pickling solutions containing sulfuric acid proved advantageous. This indicates
that fluoride residues, whose removal is enhanced by including sulfuric acid in the pickling
solution, are at least partially responsible for the occurance of porosity.

The results of these experiments provide guidelines for the edge preparation of
these alloys. Naturally, specific refinements are probably required to optimize these pro-
cedures for any particular alloy. As demonstrated with D-43, optimization of joint preparation
in severe cases requires vacuum degassing. This strongly implicates hydrogen as the source of

weld porosity. Atomic hydrogen tends to be absorbed during pickling and, because of its low
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solubility at elevated temperatures, is released upon subsequent heating during welding.
Entrapment of gaseous hydrogen during weld freezing then produces porosity. The evolution
of hydrogen from pickled refractory metals observed in vacuum annealing runs (reference,
Fifth Quarterly) lends support to this conclusion. Pickling and welding did not result in
a detectable hydrogen contamination. Ten welds were chemically analyzed and found to be
essentially free of hydrogen. The highest value was 1.6 ppm while eight values were less
than 1 ppm.

As a cross-check on the effect of edge preparation and welding procedures on weld
properties, bead-on-plate welds were made using parameters previously employed for butt
welding. The bend transition temperatures of bead-on-plate welds and butt welds produced

from sheared blanks are compared in the following table:

e )
Bend Transition Temperatures, F

Butt Weld” Bead-on-Plate Weld
Alloy Llong. Test  Trans. Test Long. Test Trans. Test
D-43 +200 +50 +400 +300
C-129y  -175 -250 -200 -175
AS-55 +75 +175 +200 -100
D-43Y 0 -200 +75 -150

* Edge preparation as per Table Il, P2-R1.

Considering the bend test variability, these appear to be comparable. The larger
variance in D-43 is probably a reflection of its greater sensitivity to welding.

A complimentary test, to determine if thermal response of the bead-on-plate welds
would differ from the butt welds was also run. In this test, bend tests of annealed D-43

welds were compared and the following results were obtained:

Post Weld Bend Transition Temperature, °F
Annealing Butt Weld” Bead-on-Plate Weld
Conditions Long. Test Trans. Test Long. Test Trans. Test
1 Hr. at 1900°F  +475 +400 +800 +400
1 Hr. at 2200°F  +400 +125 +300 0
1 Hr. ot 2400°F  +100 +25 +25 +25

*Edge preparation as per Table 11, P2-R1,

18




\ Astronuclear

Laboratory

Again, these tests seem to be in good agreement with both butt and bead-on-plate
welds responding in like manner to post weld annealing. These tests indicate that the edge

preparation had no significant effect on weld properties or weld thermal response.

B. EFFECT OF OXYGEN CONTAMINATION ON THE WELDABILITY OF REFRACTORY
METAL ALLOYS

The effect of oxygen contamination on the weldability and thermal stability of three
selected refractory metal alloys (FS-85, T-111, and T-222) is being evaluated as an additional
program to the overall weidability study. Gaseous oxidation with a low partial pressure of
oxygen in helium carrier gas is being used to contaminate 0. 035 inch alloy sheet. At the
doping temperatures employed, 800°F for FS-85 and 1100°F for T-111 and T-222, an adherent
oxide film is produced which is subsequently diffusion annealed at higher temperatures. The
apparatus and process control are described in detail in a preceding reporf(é). Figure 25

outlines the overall contamination program,

1. Oxidation Process Control -~ Although chemical analysis for oxygen content is

used to measure the contamination level, the "in-process” control is weight gain which is
measured following the oxidation process.

Figures 26 and 27 show the correlation between weight gain and actual change in
oxygen content for F5-85 and the tantalum base alloys respectively. Referring to Figure 25,
the 1:1 correlation line falls along the points representing the calculated net change in
oxygen content based on weight gain, rather than on the net change plus the initial, as~
received oxygen content, which for F5-85 is 105 ppm.

The apparent bias between the calculated oxygen content and chemical analysis
may be due to greater oxygen pickup at the specimen edges since the samples reported are
from the specimen interior, where the physical test samples comprising the evaluation program
will be obtained. Chemical analysis of edge and corner samples have consistently shown a
higher analyzed oxygen content than calculated for possibly two reasons; the greater surface
area to volume ratio existing at a corner, (the oxidation reaction is a surface area phenomenon)

and a genuine higher reaction rate near the edge because of surface condition or higher
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oxygen partial pressure. (The center surfaces are shielded by other specimens). In any case,
the bias will not jeopardize the use of weight gain as a process control tool. Better correla-
tion was obtained for the tantalum base alloys, Figure 27, particularly at the higher contamina-
tion levels. In this case the anticipated 1:1 line falls midway between the net change and

net change plus initial oxygen content.

As part of the process control and evaluation, analyses have been made for nitrogen,
carbon, and hydrogen which may be picked up as extraneous contamination during the oxygen
contamination process. Substantial changes in interstitial composition could jeopardize test
results since these interstitials significantly effect refractory metal alloy mechanical properties ]2).
Table 12 lists the results of chemical analyses made for extraneous contamination. Other than
the increase in carbon content shown for the F5-85 specimen annealed in an oil pumped vacuum
system, there has been no evidence of significant undesirable contamination. Freedom from
such contamination is necessary and considerable care is employed in process control. Ultra-
pure helium, analyzed for trace impurities of hydrocarbons, nitrogen, and water vapor is
used as the carrier gas for the oxygen contamination. The oxidation retorts are evacuated
to less than 5 x 10-6 torr prior to each run and diffusion annealing is done in sputter ion
pumped furnaces operating at from 10_7 to 10_9 torr.

The chemical analyses in the oxidation program were obtained from samples
representing the entire specimen cross section; the surfaces are solvent cleaned prior to
analysis, but no material is removed since both oxygen and extraneous contamination may be
unevenly distributed through the cross section.

The oxygen contamination is being done in batches, with eight, 4 inch long speci-
mens in each batch, amounting to 100 square inches of surface area. Figure 28 shows the
specimen to specimen variation for the first oxidation level (500 ppm by weight for FS-85
and 350 ppm by weight for the tantalum base alloys). A top view of the specimen position
is shown at the top of the figure with the oxygen pickup (calculated from weight gain) shown
below. The variation (from 20 to 10%) between eight specimens may be compared to a

(13)

variation of 5% obtained between three FS-85 specimens using vacuum oxidation at 1700°F"" .
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2. Test Results

Weld Restraint Tests - As part of the first screening phase of the alloy evaluation

program, patch type, bead-on-plate, weld restraint specimens are made of the three alloys
at each oxygen doping level. The normal size of patch test used in this program is 4 inches
square, but the doping apparatus size limitation is 2 inches x 4 inches. Consequently, a
fabricated patch specimen is used with the first weld being an automatic butt weld joining
the two 2 inch x 4 inch pieces together. Following this operation, the specimens are handled
in the normal manner, manually welding the 2 inch diameter circle and the final straight
weld. Figures 29, 30, and 31 show the patch tests of the as-received and oxygen contaminated
material, both as-welded and dye penetrant inspected. No cracks were observed in the patch
tests except for small dye indications in weld craters at the end of weld beads.

A considerable amount of black smut was observed on the as-welded patch test

specimens and on the T-111 bead-on-plate welds produced for tensile and bend ductility
testing. Since the smut was observed only on oxygen doped T-111 bead-on-plate specimens,
and all three alloys were welded in the same weld chamber load in a random sequence, an
attempt was made to identify the surface deposit. A solid source mass specfrometer(M) at

the Westinghouse Central Research Laboratory was used in a scanning surface analysis. A
high concentration of tantalum and hafnium oxides was observed in the smut area as compared

to the clean surface areas. The presence of oxides in the discolored areas correlates well

with the greater amount of smut observed on patch specimens of contaminated material.

Bend Ductility - Bend ductility tests are the primary means being used to establish

the degredating effects of oxygen contamination on mechanical properties, with both welded
and unwelded material being evaluated. Four longitudinal bend specimens are obtained from
each 4 inch long by 1 inch wide specimen. Figures 7 and 8 are the bend ductility curves
obtained from the as-received material and material doped to the first oxygen level. The
oxygen contamination level is 500 ppm for F5-85 and 350 ppm for T-111 and T-222, the
differing oxygen percent by weight providing equivalent atomic concentrations of oxygen.

It is important to note that the "as-received" material received the same thermal treatment
as the doped material, i. e., a 50 hour diffusion annealing treatment at 1800°F for the bend

ductility specimens and 1500°F and 2200°F for elevated temperature test specimens with a
Y sp P P
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corresponding testing temperature. This precaution was taken to separate thermal aging effects

from the effect of oxygen contamination in combination with time-temperature treatments.

The bend ductile-brittle transition temperatures, Figure 32, obtained for the as-

(6)

received material agree well with previous tests performed on identical material™ ™ showing
no significant aging at 1800°F. Oxygen doped material, Figure 33, shows a significant
increase in the ductile-brittle transition temperature in both the welded and unwelded
condition. All three alloys showed an upward shift in ductile-brittle transition temperature
with T-222 showing extreme loss of ductility. Some doubt is placed on bend tests above
600°F however, since the testing is done in air and in situ contamination of the bend test
samples may be misleading. Likewise, the bend ductility temperature of welded T-222 doped

to 330 ppm O,, was increased although the transition temperature was not bracketed.

(6)

temperatures (2200°F) restored the bend ductility of material doped to 260 ppm 02. The

2

Preliminary data™ " on contaminated T-222 indicated that higher diffusion annealing

higher temperature either alters the form or distribution of the oxides to produce a more

ductile material.

Bend Ductility Summary - A considerable amount of bend ductility data was obtained

in preliminary process evaluation. A summary of this data and new data obtained in the full
scale program is presented in Figures 34 and 35 which relate bend ductile-brittle transition
temperature to the oxygen content. Figure 34 compares the three alloys in the unwelded
condition while Figure 35 represents bend tests of longitudinal weld specimens. The data
obtained from the first full scale phase of the program is marked with an"N" on the two
figures.

For the most part, the new data continues the trends observed in the preliminary data
except that ductile-brittle transition points were not obtained for the higher oxygen level
(over 300 ppm) tantalum alloy welds. The T-111 specimen split down the weld centerline
during welding and the transition point was missed with the four available specimens on the
T-222 weld. FS-85 shows the least change in bend ductility properties, both in the welded
and unwelded condition, with oxygen contamination either on a weight percent or atomic

percent basis. Of the tantalum base alloys, there is a considerable and unexpected difference
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in the response of T-111 and T-222 to oxygen contamimtion. Although the behavior of T-222
. may be strongly influenced by the form and distribution of oxygen, (see previous discussion

on 2200°F diffusion treatment), a comparison of welded specimens of the two alloys, (a

complete redistribution occurs in the weld metal), still shows the T-111 alloy to be markedly

superior to T-222 at oxygen contamination levels up to 250 ppm.

Metallography - Hardness traverses were obtained across contaminated 0. 035 inch
sheet for background information relating to oxygen concentration gradients. Hardness data,

as related to oxygen content, must be judiciously applied to gettered alloys because of several

(15).

competing effects The hardness level, per se, generally cannot be directly related to
oxygen content since increasing the oxygen level can result in the formation of incoherent
oxides of Zr and Hf causing an actual decrease in the hardness of the matrix through the

loss of Hf and Zr as solid solution strengtheners. The softening may continue until the getter
additions are consumed, theoretically between 2000-3000 ppm oxygen for the alloys investi-
gated, assuming ZrO2 or Hf02 are formed. After the reactive solutes are largely removed,
the solid solution hardening effects of oxygen would predominate and an increase in hardness
would be expected.

Figures 36, 37, and 38 are cross sectional hardness traverses of the as-received alloys
and oxygen contaminated alloys diffusion annealed at 1800°F and 2200°F. The hill and
valley variation observed between adjacent hardness values is normal with the small sized
Knoop indenter and normally represents changes in grain orientation between impressions.
FS$-85, Figure 36, shows a higher hardness at the edges following the 1800°F diffusion anneal
although the 2200°F anneal traverse is comparable to as-received material. The hardness
depression in the 1800°F anneal traverse for FS-85 may represent an advancing oxygen front
combining with the zirconium getter and producing an initial softening. With this reasoning,
the center area represents the as-received hardness, indicating low oxygen content and the
edges have a high oxygencontent, exceeding the amount needed to combine with the getter
addition. The 2200°F diffusion treatment has apparently leveled the oxygen concentration
gradient. These suppositions will be tested in layer by layer chemical analysis through the

material cross section. The 2200°F diffusion anneal will not be used as a general leveling
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treatment since the oxygen concentration gradients expected in hardware operating at

1500°F to 1800°F is not known and a gradient of some degree may be more typical.

The tantalum base alloys display a similar leveling of the hardness gradient follow-
ing the 2200°F anneal. The overall general softening of T-222 following the 2200°F-50

hour diffusion anneal is unexpected and may represent an overaged condition.

Figure 39 compares Vickers hardness traverses across TIG welds in as-received and
oxygen contaminated material of the three alloys. The similarities in the traverse values is
striking with an increase in the weld metal hardness for all of the contaminated welds. The
actual decrease in base metal hardness for the contaminated T-222 alloy is reasonable since
the contaminated T-222 was diffusion annealed 50 hours at 2200°F, (note the decrease in
hardness following the 2200°F anneal shown in Figure 38), and the base metal would be
expected to be softer than the as-received T-222 base metal which was solution annealed
1 hour at 3000°F. All three contaminated alloys shown in Figure 14 were diffusion annealed
at 2200°F,

Photomicrographs of the as-received and oxygen doped alloys are shown in Figures
40, 41, and 42, Although the contaminated material is shown following a 50 hour 2200°F
diffusion anneal, no significant differences were noticed following the lower temperature
diffusion treatments. No visual evidence of oxygen concentration gradients was observed
using the metallographic preparations and magnifications shown. Future work will include
higher magnification and anodizing=straining techniques as a means of phase identification.

(16,17)

Recent work at the Astronuclear Laboratory has indicated that staining techniques may
be useful in oxide particle identification. There appears to be a greater amount of grain
boundary precipitate in oxygen doped F5-85, Figure 40. No concentration was noticed near
the surface. A slight increase in grain boundary and general precipitate is observed in T-111,
Figure 41, and T-222, Figure 42, displays a more marked increase, especially in general and
flow line precipitate. Extraction and x-ray diffraction techniques will be used in the future,
especially if the precipitate concentration continues to increase with oxygen contamination

level.
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3. Work in Progress - The three alloys, T-111, T-222, and F5-85 have been oxygen
doped to the second level, 1000 ppm 02 for FS-85 and 700 ppm 02 for T-111 and T-222.
Work on the third level has been started with FS-85 being contaminated to 200 ppm 02. The
equivalent atomic oxygen content for the tantalum base alloys will be 140 ppm, (see Table 13).

Tensile specimens have been machined for the room temperature and elevated

temperature tests for the as-received and the 500/350 ppm O,, doping levels for the three

2
alloys.

Chemical analysis specimens have been obtained from representative samples of the
first two evaluation levels, the as-received material and the first confamination level.
Analyses are in process for both oxygen level and nitrogen and carbon content to keep close
control over extraneous contamination and in the case of carbon, the intentional alloying
addition for T-222. Over 36 anclyses are represented in this first full size group, and a more
complete story of the weight gain-chemical analyses correlation will be obtained. Oxygen
analyses are being made of both the base and weld metal to follow any oxygen decrease in
the weld metal as was observed in the overall weldability evaluation program é . Sections
of as-received and contaminated welds and base metal are being prépared for metallographic
examination and hardness surveys.

Following the completion of oxidation to the third level in progress, 200 ppm for
FS$-85 and 140 ppm for T-111 and T-222, the fourth and final oxidation level wiil be
completed for the screening phase of the program. In view of the deterioration of bend
ductility at moderate oxygen contamination levels, especially for T-222, it is anticipated
that a low oxidation level of 100 ppm 02 for FS-85 and 70 ppm 02 for T-111 and T-222
will be substituted for the originally intended level of 2000 ppm. Table 2 shows the oxidation

levels by weight and atomic percent oxygen.

In conjunction with the regular chemical analyses run as a check on in-process
weight gain measurements, two evaluations will be made to determine oxygen contamination
uniformity both from point to point on a given specimen and also through the specimens cross-
section. This data should answer the questions posed by the weight gain-chemical analysis

bias shown in Figures 26 and 27 and by the hardness traverses through the material thickness.
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Since both the distribution and form of the oxides introduced into contaminated
material may be dependent on the contamination process used, material oxidized by alternate
processes will be evaluated. Three samples of FS-85 have been vacuum oxidized“B) to
500 ppm 02 at 1700°F and these will be evaluated for mechanical properties and oxide
distribution as compared to the low temperature oxidation and diffusion annealing treatment
used in this program. Samples of each alloy have also been electro-chemically anodized(ls)

and will be diffusion annealed and similarly evaluated.

IV. FUTURE WORK

Baseline tensile testing at room and elevated temperatures will be completed and

reported for the columbium and tantalum alloys. Both weld and base metal tests at 1800°F,
2100°F, and 2400°F will be included.

Preliminary data of the thermal stability study will be obtained including tests
following a 100 hour 1700°F screening anneal.

Additional doping levels will be completed and evaluated in the contaminated alloy

weldability study.
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Alloy
} AS-55
B-66
C-129Y
i Cb-752
D-43
FS-85
SCb-291
. D43 +Y
T-111
T-222
Ta-10W
W-25 Re
W

Sylvania "A"*

Nominal Composition
Weight Percent

Cb~5W-12Zr-0.2Y-0.06C
Cb-5Mo=-5V-1Zr
Cb-10W-10Hf+Y
Cb-10W-2.5Zr
Cb-10W-1Zr-0.1C
Cb-27Ta-10W-12Zr
Cb-10W-10Ta
Cb-10W-1Zr-0.1C+Y
Ta-8W-2Hf
Ta-9.6W-2.4Hf-0.01C
Ta-10W

W-25Re

Unalloyed
W-0.5Hf-0.02C

* NOTE: All alloys from arc—-cast and/or electron beam melted material

except Sylvania "A"
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‘ TABLE 1 - Alloys Included in the Weldability and Thermal Stability Evaluations
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TABLE 9 - Plate Weld Bend Test Visual Inspection
Specimen "
Alloy No. Type Condition Comments
B-66 1-2 Long. AW Transgranular cleavage-full width failure
5-6 Long. AW Transgranular cleavage-full width failure
7-8 Long. PWA Transgranular cleavage-full width failure
9-10 Trans. AW Full width transgranular cleavage, 25% weld
centerline~75% weld interface
11-12 Trans. AW Full width weld centerline transgranular
cleavage
13-14 Trans. PWA Full width weld centerline transgranular
cleavage
C-129Y 1-2 Long AW Full ductile weld bend-slight base tension
side edge traps
3-4 Long AW Full ductile weld bend-slight base tension
side edge traps
7-8 Long PWA Full ductile weld bend-slight base tension
side edge tears
9-10 Trans AW Full width weld centerline transgranular
cleavage
13-14 Trans AW Full width (90% HAZ-10% WELD) trans-
granular cleavage
11-12 Trans PWA Full ductile weld bend
Cb-752 1-2 Long AW Full width transgranular cleavage
3-4 Long AW Full width transgranular cleavage
7-8 Long PWA Full width transgranular cleavage, slight
lamination
9-10 Trans. AW Full width weld centerline cleavage
13-14 Trans. AW Full ductile bend
11-12 Trans. PWA Full width weld interface cleavage

* AW - As-Welded

PWA - Post-Weld Annealed




Astronuclear

Laboratory
TABLE 9 - Plate Weld Bend Test Visual Inspection
(Continued)
Specimen
Alloy No. Type  Condition Comments
D-43 1-2 Long. AW Full width tension side cleavage, slight
lamination at base of crack
3-4 Long. AW Severe tension surface cleavage, weld &
HAZ, not to edge
5-6 Long. PWA Full bend with sudden severe tension surface
cleavage (90%) at outer end of bend
9-10 Trans. AW Full width cleavage, 25% weld-75% HAZ
13-14 Trans. AW Full width weld centerline cleavage
11-12 Trans. PWA Full ductile bend
FS-85 1-2 Long. AW Full transgranular cleavage at outer end of
bend
3-4 Long. AW Full transgranular cleavage at center, slight
lamination
7-8 Long. PWA Full ductile bend
9-10 Trans. AW Full ductile bend
11-14 Trans. AW Full ductile bend
12-13 Trans. PWA Full ductile bend
SCb-291  1-2 Long. AW Full transgranular cleavage at outer end of
bend
3-4 Long. AW Full ductile bend
7-8 Long. PWA Full ductile bend
9-10 Trans. AW Full ductile bend
13-14 Trans. AW Full ductile bend
11-12 Trans. PWA Full ductile bend
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TABLE 9 - Plate Weld Bend Test Visual Inspection
(Continued)
Specimen
Alloy No. Type Condition Comments
Ta-10W  3-4 Long. AW Full ductile bend
5-6 Long. AW Full ductile bend
9-10 Trans. AW Full ductile bend
11-12 Trans. AW Full ductile bend
T-111 1-2 Long. AW Full ductile bend
3-4 Long. AW Full ductile bend with slight weld surface
tearing at base of weld ripple
7-8 Long. PWA Full ductile bend
9-11 Trans. AW Full ductile bend
10-12 Trans. AW Full ductile bend with very slight weld

crater tearing

13~-14 Trans. PWA Full ductile bend

T-222 1-2 Long. PW Full bend with tension side weld tears

(1-1/4", others 1/16")

3-4 Long. AW Full bend with tension side weld tears
(8-12, 1/16" long)

7-8 Long. PWA Full ductile bend

9-10 Trans. AW Full ductile bend with slight weld crater
tearing

11-12 Trans. AW Full ductile bend with slight weld crater
tearing

13-14 Trans. PWA Full ductile bend with slight tears in apparent

area where metallic pickup may have occurred
(copper) during welding
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TABLE 10 - TIG Butt Weld Porosity Count

Alloy Pores/in. M
TA-10W 0
T-222 0.034
T-111 0.051
FS85 0.092
SCb291 0.83
C129Y 2,0
B66 2.6
Cb752 2.9
D43 8.4
D43Y 8.0

(1) Based on approximately 15 feet
of weld using optimum weld param-
eters based on bend ductility, except
D43Y for which the weld parameter
series count is shown,
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TABLE 11 - Pickling and Rinsing Schedules for Weld Porosity

Evaluation (See Figure 24)

P1

P2

P3

P4

R1

R2

Pickling Solution, v/o

25% H2N03, 25% HF, H20 balance

20% H2NO 15%HF, 10% H_SO HZO balance

2774

8% HF, 25%H2504, HZO balance

15% HF, 25% H2504, HZO balance

3'
O,
25% H 2N 03,

O,
25% H2N 03,

Rinsing Schedules

1. Fast transfer from pickle bath to rinse
30-second boiling distilled water
1-minute flowing cold water rinse
5-minute boiling distilled water

Ethy!l alcohol rinse

o v A w N

Hot air flash dry

1. Fast transfer from pickle bath to rinse
10-minute rinse in cold flowing tap water
3-minute rinse in boiling distilled water

Ethyl alcohol rinse

O x L

Hot air flash dry
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Ppm by Weight
Material]  Sample O | N2 ¢ H,
As-Received FS-85 C3-C 104 38 23
Material T-11 T1-C 38 | 24 32
T-222 T3-C 75 8 | 110
|Oxygen Doped|FS-85 C3CD-102 260 41 32
and Diffusion c3cp-402 || 310 | -- 34 22
Annealed
c3cp-402 || 310 | -- 33
C3-BL* 870 | 49 60
C3GL-1 920 | 40 21
T-11 T1CD-101 g2 | -- 35
Ti-CL 150 | 22 46
Ticp-303 || 210 | -- 36 14
T-222 T3-CL 180 | 10 |12
tacp-103 || 180 | -- | 130
tacp-302 || 275 | -- |20 24

*Diffusion annealed in oil pumped system.
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TABLE 13 - Selected Oxygen Contamination Levels

F8-85 T-111 and T-222
Chronological
Order . . . .
Weight ppm| Atomic ppm] Weight ppm| Atomic ppm
4 100 780 70 780
3 200 1560 140 1560
] 500 3900 350 3900
2 1000 7800 700 7800

As-Received Oxygen Levels

!Weighf ppm | Atomic ppm
FS-85 105 820
T-11 40 450
T-222 75 840
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WELDABILITY
EFFECTS OF WELD PARAMETER DETERMINATION OF WELD
AND PROCESS VARIATIONS - HOT TEAR SENSITIVITY
1

L

TUNGSTEN ARC
WELDING

|

1

ELECTRON BEAM
WELDING

J

OPTIMIZATION OF WELD
PARAMETERS AND PCST
WELD APINEALS

]

EFFECT OF POST WELD ANNEALING

|

PRELIMINARY SCREENING FOR
THERMAL INSTABILITY

|

ELEVATED TEMPERATURE STABILITY

WELD PREPARATION USING OPTIMIZED PARAMETERS
AND POST WELD ANNEALS

AGING

TEMPERATURE RANGE - 1500°F TO 3200°F
TIME - TO 10,000 HOURS

EVALU.

ATION

ANALYSIS OF RESULTS

FIGURE 1 - Chronological Program Outline
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D-43

) w
- § Yy Ll o m
s £ - i "
¢ e e e A S PR
- - ; L E 5 st
- e / ,-‘./\ - T
Y 2 e ; e i -
“ FT—-“ 1 -

e A A ) . LT Tt s
P A ul.\) ) )

D-43Y

FIGURE 3 - As-Received Microstructures of D-43 and D-43Y Sheet
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603897-13 B
TEST TEMPERATURE, °F

FIGURE 4 - D-43Y Base Metal Bend Test Results. 1t Bend Radius
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FIGURE 5 - D-43Y EB Weld Bend Test Results,
1t Bend Radius
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FIGURE 6 - D-43Y EB Weld Bend Test Results,

1t Bend Radius
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FIGURE 7 - D-43Y TIG Weld Bend Test Results,
1t Bend Radius
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FIGURE 8 - D-43Y TIG Weld Bend Test Results,

1t Bend Radius
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FIGURE 9 - Effect of Post Weld Annealing on D-43Y Weld Ductility
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WELD BEND DUCTILE- BRITTLE TRANSITION TEMPERATURE, °F
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FIGURE 10 - Effect of Post Weld Annealing on D-43 Weld Ductility
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L 2 IN, DIAMETER CIRCLE AND CROSS WELDED
IN SHEET. NO FILLER WIRE USED,

{A) BEAD-ON-PLATE RESTRAINT PATCH TEST DESIGN

N .
IN/aNiX

U GROOVE IS WELDED
WITH ONE FUSION

= PASS AT ROOT AND

TWO FILLER PASSES,

B
/8 IN. ‘/ T
T SECTION A=A

3/2 R

p—— 2 [N, —

(B) CIRCULAR GROOVE WELD RESTRAINT TEST SPECIMEN 603897-3 B

FIGURE 11 - Weld Restraint Test Specimens for 0.035 Inch Sheet
(a), and 0.375 Inch Plate (b).
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ALLOY PLATE
15Q. FT, X 0.375
PLATE CUT-UP,
EDGE PREP.,
PICKLE
WELD WELD
OPERATOR f1 . OPERATOR #2
-
LONGITUDINAL AND
TRANSVERSE BEND
POST WELD TESTS
ANNEAL -
LONGITUDINAL AND TRANSVERSE V

TENSILE TESTS

METALLOGRAPHY pesg—— = CHEMISTRY

603897-2 B

FIGURE 12 - Program Outline for Plate Weldability Evaluation
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FIGURE 13 - Plate Butt Weld Joint Configuration
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WELD 321 - SCb-291 Butt Weld, 3/8 Inch Plate,

1. Tack welded in center and at ends of joint. Positioned in clamp down

fixture. 155 amperes.

2. Fusion pass on side No. 1. 300 amperes. Continuous weld from one

end. One side of joint clamped, other side cantilevered.

3. Fusion pass on side No. 2. 280 amperes. Specimen supported along

each edge on copper blocks. Continuous weld.

4, First filler pass on side No, 2. 300 amperes. Continuous weld.

5. First filler pass on side No. 1. 300 amperes. Continuous weld.

6. Second filler pass on side No. 2. 280 amperes. Continuous weld.

7. Second filler pass on side No. 1. 280 amperes. Continuous weld.

FILLER WIRE REQUIREMENTS: 2-1/2 inch of 0. 082 diameter wire per

inch of weld.

FIGURE 14 - Welding Schedule for SCb-291 Butt Weld in
3/8 Inch Plate Material




10,181 6X

: D-43

FIGURE 15 - Typical Plate Weldment Macrosections
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512-4

716-2
FIGURE 17 - Special Torch for Vacuum Purged Weld Chamber

Top, Plastic Sheath Insulated. Bottom, Nylon
Standoff Insulated.
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10,173 500X

10,181 o 500X
Welded and Annealed for 1 Hr. at 2400 F (Second Phase in
Final Weld Pass Only)

FIGURE 20 - FS-85 Welded Plate, Weld Microstructure
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10,179 ° 500X
Welded and Annealed for 1 Hr, at 2400°F

FIGURE 21 - D-43 Welded Plate, Weld Microstructure
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FIGURE 22 - Weld and Heat Affected Zone Microstructure of

Cb-752 Welded Plate
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.

500X

10,183 500X
Welded and Annealed 1 Hr. at 1900°F

FIGURE 23 - B-66 Welded Plate, Weld Microstructure
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GRIND EDGES MACHINE EDGES
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1
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{
\
SCRUB
HAND SOAP
SCRUB 2 2
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COMPOUND RI R2
‘ ‘ W
—@__ DEGAS
‘ 1 HR/2000 ° F
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NOTES:
WELD AND RADIOGRAPH 1 CIRCLED
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1 + 1 ! 1 \ NUMBER OF WELDS.
POROSITY 2. FOR PICKLING AND
COUNT | 25 lo.00 | 4.85] 3.20] 1.95] 0.27]0.56 | 0.00] 0.00 ELE‘ST'A';fEﬁf“EDULES
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REFERENCE | 1 | 2 3 4 s | 6|7 8 9
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FIGURE 24 - Process Flow Diagram for Weld Porosity Evaluation of D-43
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3 ALLOYS
Fs-85, T-11, T-222

*HIG HEST LEVELS WILL
BE COMPATIBLE WITH
CERTAIN MINIMUM

Astronuclear

PROPERTIES
i
OXYGEN CONCENTRATION, 4 LEVELS®
AS 200 500 1000 2000
RECEIVED pem ppm ppm pem
DIFFUSION HEAT TREATMENT - 50 HOURS
i500°F |  TEMPERATURES CHOSEN TO
laoo:F MATCH 1000 HOUR AG ING
2220°F |  TREATMENT OF THERMAL
STABILITY STUDY
EVALUATED, ,AS DOPED WELD & EVALUATE
R.T. TENSILE R.T. TENSILE
E.T. TENSILE £.T. TENSILE
BEND TEST BEND TEST
WELD RESTRAINT TEST
" SELECT BEST ALLOY

|

[ CONTAMINATE ]

WELD

AGE 1000 HOURS AT 1500 °F, 1800 °F, 2200 °F

EVALUATE BASE METAL
R. T. TENSILE
BEND TEST

EVALUATE WELD METAL
R. T. & E. T. TENSILE
BEND TEST

605807A

FIGURE 25 - Program Outline for Contaminated Alloy Weldability Evaluation
NOTE: Bead-on Plate Welds Used on this Program
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FIGURE 26 - Correlation of Weight Gain with Chemical Analysis
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PPM O, (BY WEIGHT) CHEMICAL ANALYSIS
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FIGURE 27 - T-111 and T-222 Correlation of Weight Gain with Chemical Analysis
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C3CU-7-8 667-2 C3CU-7-8 714-3

FS-85 As-Received

s C3Cl1-7-8 667-7 C3CI-7-8 714-5
FS-85 Contaminated to 575 ppm 02
. As-Welded Dye Penetrant Inspected

FIGURE 29 - FS-85 Fabricated Weld Restraint Tests
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TICU-7-8 667-5 TICU-7-8 714-9

T-111 As-Received

TIC1-7-8 668-4 TICI-7-8 714-10
T-111 Contaminated to 335 ppm 02
As-Welded Dye Penetrant Inspected

FIGURE 30 - T-111 Fabricated Weld Restraint Tests
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668-6 T3CU-7-8 714-2

T-222 As-Received

T3CI-7-8 667-1 T3CI-7-8 714-6
T-222 Contaminated to 310 ppm 02
As-Welded Dye Penetrant Inspected

FIGURE 31 - T-222 Fabricated Weld Restraint Tests

75



BEND ANGLE, DEGREES

120

100

80

60

40

20

120

8

80 |-

60

40

20

120

100

80

60

40

20

Astronuclear
Laboratory
— — 126 T T T —
— -
] |
— | LoNG. DBTT llonG.,
-225°F FS-85 | DBTT
i -100° F
L + 40 |- + -
/ C3Cu-5 C3CU-6
— 4 - 20 |- —
\ \ L 0 | i I R
-300 -200 -100 -300 -200 -100
| B T 1 120 T 1 T T T T
- o 4 100 L .
: g
go |- | a
| LONG. DBTT 7] | LONG. DBTT
| <-320°F I <-320°F
T-il1
| T1-CU-6 ‘l 20 |> TICU-5 _
0 L IR S [ TR R S S S
-300 -200 -100 -300 -200 -100
— — 120 T T T T
* +—9
| |
~ | LONG. DBTT | LONG. DBTT 1
| <-2¢FF T-222 | -250°F
- 40 -
1 | | | 0 i ] | 1 ] |
-300 -200 -100 -300 -200 -100
BASE WELD
TEST TEMPERATURE, °F 603897-5 B

FIGURE 32 - Longitudinal Bend Test Results of Uncontaminated,1800°F
Diffusion Annealed Material
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FIGURE 33 - Longitudinal Bend Tesf Results of 500/350 ppm Oxygen
Contaminated, 1800°F Diffusion Annealed Material
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FIGURE 34 - Longitudinal Base Metal Bend Ductility as A Function of Oxygen Content
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FIGURE 35 - Longitudinal Weld Bend Ductility as a Function of Oxygen Content
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FIGURE 37 - Cross Sectional Hardness Traverse of T-111

81




Astronuclear
Laboratory

400
360
320
280
240

200

400
360

320
280

240

KNOOP HARDNESS (100 GM LOAD)

200

400

360

320

280

240

200

T T T T | T T T T T
AS RECEIVED 3000° F-1 HR,
[ 75PPMO, @ PROCESS ANNEAL .—
@
r— - - \ ———
*-o .‘0../ 0. g-0-¢.0 VICKERS
.\ o ‘ \.~ AVE
u ...O/ o ql- ® | 28 0pH
|
- | T3C2  _
I I l | ! I l | | I
0 4 8 12 16 20 24 28 32 36 40 44
T T T T T T T T | T
/° CONTAMINATED ®.
~ o-® 160 PPM O, o , S e -
a /7 ®  1500°F - 50 HRS. _|
o /0 | J .\. DIFFUSION ANNEAL] VICKERS
@, AVE,
» No-® ql_ —| 282 DPH
[ T3-AS1
- | —
| | L | | ] i i | I
0 4 8 12 16 20 24 28 32 36 40 44
T T T T T T T | T T
CONTAMINATED o
— 265 PPM O, 2200° F - 50 HRS . —
DIFFUSION ANNEAL
N ¢
| VICKERS
I 0\ , AVE,
. - 2190PH
,0-0 .\ |—.~ ." i
T N Ve 9%
- o No-@ T3-CD3 |
| | | ! | 1 | | | |
0 4 8 12 16 20 24 28 32 3 40 44
THICKNESS (MILS) 603897-19 B

FIGURE 38 - Cross Sectional Hardness Traverse of T-222
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FIGURE 39 - Weld Hardness Traverse of As-Received and
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FIGURE 40 - Microstructure of As-Received and Contaminated FS-85
(Etch: Glycerine Base HF-HNO3 + NH4F— F)
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FIGURE 41 - Microstructure of As-Received and Contaminated T-111
(Etch: 9562 - NH4F- HF, 9729 - Glycerine Base HF-HNO

+ NH F- HF Wipe)
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FIGURE 42 - Microstructure of As-=Received and Contaminated T-222

(Etch: Glycerine Base HF—HNO3 + NH4F- HF Wipe)
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